Публикации
Гроупедия
Перейти к содержанию

Поиск сообщества

Показаны результаты для тегов 'ультрафиолет'.

  • Поиск по тегам

    Введите теги через запятую.
  • Поиск по автору

Тип контента


Форумы

  • Администрация
    • ПРАВИЛА ФОРУМА
    • Обратная связь
  • Растениеводство
    • Я – новичок
    • Жизненный цикл. От семечки до урожая
    • Культура употребления
    • Гроубокс
    • Гидропоника
    • Земля и почвосмеси
    • Органика
    • Открытый грунт
    • Сорта и генетика
    • Оборудование и удобрения
    • Видеоканал
    • Своими руками
    • Библиотека
    • Техническое коноплеводство
    • Ситифермерство
    • Энтеогены
    • English Growers Area
  • Гроурепорты
  • Конкурсы
  • Гроу - рынок
  • Общество

Категории

  • Все публикации
    • Новости
    • Тенденции
    • Интервью
    • События
    • Дайджест
    • Истории
    • Конкурсы
    • Видео
  • О нас
  • Важное
  • Акции гроурынка
  • Гроупедия
    • Гроупедия
    • Я - новичок
    • Жизненный цикл
    • Вода и водоподготовка
    • Почва и субстраты
    • Удобрения/стимуляторы
    • Сорта и генетика
    • Проблемы растений
    • Тренировка растений
    • Гроубокс / Гроурум / Микро / Стелс
    • Освещение
    • Гидропоника
    • Органика
    • Открытый грунт (Аутдор)
    • Своими руками (Handmade / DIY)
    • Культура употребления
    • Видеотека
    • Энтеогены
    • Библиотека
    • Кулинария
    • Медицина
    • Топы / подборки
    • Лайфстайл
    • Исследования
    • Ситифермерство
    • Гроухаки
    • История
    • Экстракты
    • Юридическая безопасность
    • Техническое коноплеводство
    • Другое
  • Шпаргалка
  • Архив лунного календаря
  • Оборудование и удобрения
    • Онлайн гроушопы
    • Физические магазины
    • Оборудование
    • Удобрения
    • Магазины оборудования и удобрений в странах СНГ
  • Семена
    • Сидшопы
    • Сидбанки
  • Гороскоп
  • Девайсы

Поиск результатов в...

Поиск контента, содержащего...


Дата создания

  • Начало

    Конец


Дата обновления

  • Начало

    Конец


Фильтр по количеству...

Регистрация

  • Начало

    Конец


Группа


Telegram


Сайт


ICQ


Jabber


Skype


Город


Интересы

  1. Почитать по теме: Понимание метрики фитосвета Ультрафиолет в выращивании Влияние красного и дальнего красного света на цветение На весь белый свет: особенности подсветки белыми светодиодам
  2. В этих лекциях, переведенных каналом MiniFermer Led, всемирно известный профессор физиологии сельскохозяйственных культур Доктор Брюс Багби рассказывает о влиянии дальнего красного и ультрафиолетового света на растения. Почитать по теме: Понимание метрики фитосвета Ультрафиолет в выращивании Влияние красного и дальнего красного света на цветение На весь белый свет: особенности подсветки белыми светодиодам Просмотр полной Статья
  3. Исследования канабиса не стоят на месте. Группа ученых в США, штат Мериленд, провела исследование на тему влияния УФ-излучения на растение. Существует 3 типа ультрафиолетового излучения: ближний ультрафиолет УФ-А (UVA) 315 - 400 нм УФ-Б (UVB) 280 - 315 нм Дальний ультрафиолет УФ-С (UVC) 100-280 нм Ученые подвергали облучению УФ-Б (UVB) техническую коноплю с высоким содержанием КБД и коноплю ямайской генетики с высоким содержание ТГК. Было установлено, что повышенные дозы спектра УФ-В привели к увеличению ТГК почти на 28%, а на содержание КБД не повлияло. Поэтому можно сделать вывод, что УФ-Б (UVB) играет роль в синтезе ТГК. Однако увеличение выработки ТГК можно ожидать только от сортов конопли с уже и так высоким процентом ТГК. Так что если дух экспериментатора вам не чужд, можно купить лампу спектра УФ-Б (UVB). Включать ее следует только на цветении и в «дневное» для растения время, короткими периодами минут по 15, до 4-6 раз за день. ВАЖНО: УФ-излучение вредно для глаз, так что берегите себя. А может кто-то уже пробовал этот метод?
  4. Многие гроверы не понимают, что такое ультрафиолетовый свет для растений. Часть людей считает, что ультрафиолет вреден для растений. В этой статье мы расскажем о 4 причинах по которым стоит добавить УФ-А в свои гроубоксы, но до этого давайте вначале разберемся что такое ультрафиолет вообще: УФ - это электромагнитное излучение, находящееся между видимым человеком спектром света и рентгеновским излучением. От 400 нм до 10 нм (для сравнения видимый человеком свет от 400 до 700 нм.) Для растений существует два типа ультрафиолета: УФ-А и УФ-Б. УФ-А это наименьшая энергия УФ и составляет от 400 нм до 315 нм. УФ-Б - более высокая энергия, чем УФ-А, и составляет от 315 до 280 нм. На уровне моря около экватора 6% солнечной радиации составляет ультрафиолет. Из них 5,7% - УФ-А и 0,3% -УФ-Б. В зависимости от широты, высоты и времени года растения получают от 10 до 100 раз больше УФ-А, чем УФ-В. Ультрафиолетовый свет более высокой энергии, такой как УФ-С, отфильтровывается нашей атмосферой и не достигает поверхности Земли. ( УФ-С очень опасен для живых организмов.) Первая причина использовать ультрафиолет-А - это увеличение урожайности. Эффект ультрафиолетового излучения на растения хорошо изучен, однако не все эти исследования давали положительный эффект, во многом потому что методы исследования фокусировались на отдельных частях растений, например таких как хлоропласты, а не целые листья или целые растения в течении времени роста. Эти не полные исследования во многом создали ультрафиолету репутацию, которую он не заслужил (не было найдено прямой зависимости между фотосинтезом и УФ), так же были недооценены изобретательные растения, которые имеют способность сильно адаптироваться к УФ. Исследования на базилике, свекле и китайской капусте, при дополнительном облучении УФ-А в большинстве случаев приводили к увеличению площади листа и веса сырого продукта. Другие длительные исследования на олеандре и травах при досветке 340 нм УФ-А улучшали общий фотосинтез на 8-10% (не насыщающим фоном PAR при 500 мкмоль м-2 с-1.) При тестах на салате Латук существенно увеличивался размер листа, и масса сухого продута. Огурцы, выращенные под воздействием УФ-А имели более высокий потенциал фотосинтеза и повышенной транскрипцией генов, отвечающих за фиксацию углерода в клетке, по сравнению с растениями, выращенными под красным, зеленым и желтым спектрами. Причина 2 - УФ-А может изменить питательные качества ваших растений. Аналогично тому, как небольшая доза УФ полезна для человека, поскольку она помогает нам производить витамин D, растения так же реагируют на УФ, производя антиоксидантные соединения, такие как флавоноиды и фенольные соединения (кстати, именно эти соединения часто ответственны за яркие цвета фруктов - фиолетовый, красный и синий). Многие из этих соединения очень полезны для человека. Флавоноиды часто ассоциируют с большей продолжительностью жизни, с избавлением от лишнего веса, со здоровым сердцем и снижают риски возникновения рака, а так же снижают риски нейродегенеративных заболеваний. Другие фенольные соединения так же имеют важную роль в профилактике и лечении рака. Исследования показывают, что дополнительное облучения УФ-А перечной мяты, увеличивает как площадь листьев, так и общее количество фенолов и терпиноидов. Причина 3 - Ультрафиолет увеличивает вкусовые качества ваших растений, за счет увеличения уровня содержания терпенов. Эти элементы растения, служащие своего рода, защитой от солнца так же отвечают за вкус и аромат плодов и цветов. Причина 4: УФ может сделать ваши растения более устойчивыми к грибковым инфекциям Воздействие УФ-излучения -может увеличить толщину «кожи» или эпидермиса листьев, тем самым увеличивая его устойчивость к грибковым инфекциям. Возможно, вам интересно: «Как может УФ-А увеличить рост растений, когда он не очень фотосинтетически активен?» Магия УФ-А не в том, насколько она является фотосинтетически активным. Самое главное, какое влияние он оказывает на ваши растения. Ультрафиолет дает сигнал вашим растениям к изменению шаблона роста, к изменению биохимических процессов и транспирации. Свет - это не просто энергия для растений - это также и информация. Растения развили совершенно невероятные способы «увидеть» то, что вокруг них, чтобы корректировать свой рост и оптимизировать захват энергии. Первое, что растениям нужно «видеть», это другие растения рядом. Если другое растение находится выше или сбоку от них, они могут корректировать количество, размер и распределение листьев, а так же и дальнейшее направление роста. Все эти приемы позволяют получить наибольшее количество света, несмотря на конкурентов. Когда речь идет об искусственном освещении, дело уже не только в том, где свет ярче, но и в том какой длины волны он. Проходя сквозь листья, свет сильно фильтруется в области УФ, и в области синего и красного спектра. Поэтому растение понимает, что оно на ярком свете, когда на листья попадает большое количество синего, красного и УФ. Также верно и обратное, если уровень синего, красного и УФ спектра низкий, и много зеленого и инфракрасного спектра, растение считает, что оно затенено и начинает вытягивать стебель в поисках более яркого места под "солнцем". В целом такая тенденция роста сильно понижает урожай. УФ-А вместе с синим спектром инициирует ряд фоторецепторов (молекул, которые обнаруживают свет и посылают сигналы растению). В настоящее время идентифицированы критохром, фототропин, ZTL / FKF1 / LKP2 и в меньшей степени фитохром. Эти фоторецепторы вызывают ряд изменений, в том числе увеличение - производства хлорофилла, создание больших по размеру листьев, которые способны захватывать больше света, а так же, дают сигнал устьицам на листьях открыться, давая больше притока углекислого газа. Эксперименты на сое показали, что воздействие УФ-А делает растения более кустистыми и менее вытянутыми. В целом, все эксперименты на растениях в первую очередь говорят о значительном увеличении размеров листа. Подобный наглядный эксперимент каждый может провести сам для себя лично. Так же есть несколько интересных исследований о связи выработки ТГК и количества ультрафиолетового излучения в среде роста. Ученых на эту мысль натолкнуло то, что самые мощные лендрейсы растут, как правило, на высокогорьях, где уровень УФ излучения выше всего на планете. «Ближний» ультрафиолет типа А можно получить используя МГЛ или ДРИ лампы, по мимо мощного синего спектра в них присутствует и УФ-А. Так же есть гибридные лампы ДНАТ + МГЛ, что очень ценятся многими профессиональным гроверами. Можно подобрать и светодиоды УФ-А для самодельных LED светильников или уточнять спектрограммы рыночных LED светильников; имеют ли они в своем составе захват УФ – А (400 нм до 315 нм). В следующей статье мы попытаемся подробней разобраться в метрике современного фитосвета. В заключении, надо заметить, что нет предела совершенству в плане света для ваших растений, особенно когда речь идет о домашнем индоре ) Если у кого то есть опыт работы с ультрафиолетом пишите в комментариях, возможно именно ваши наработки попадут в гроупедию и станут примером для других гроверов. Дополнительно: Обсуждение на форуме Растения и ультрафиолет Материал подготовлен при финансовой поддержке магазина RuSensi
  5. УФ - это электромагнитное излучение, находящееся между видимым человеком спектром света и рентгеновским излучением. От 400 нм до 10 нм (для сравнения видимый человеком свет от 400 до 700 нм.) Для растений существует два типа ультрафиолета: УФ-А и УФ-Б. УФ-А это наименьшая энергия УФ и составляет от 400 нм до 315 нм. УФ-Б - более высокая энергия, чем УФ-А, и составляет от 315 до 280 нм. На уровне моря около экватора 6% солнечной радиации составляет ультрафиолет. Из них 5,7% - УФ-А и 0,3% -УФ-Б. В зависимости от широты, высоты и времени года растения получают от 10 до 100 раз больше УФ-А, чем УФ-В. Ультрафиолетовый свет более высокой энергии, такой как УФ-С, отфильтровывается нашей атмосферой и не достигает поверхности Земли. ( УФ-С очень опасен для живых организмов.) Первая причина использовать ультрафиолет-А - это увеличение урожайности. Эффект ультрафиолетового излучения на растения хорошо изучен, однако не все эти исследования давали положительный эффект, во многом потому что методы исследования фокусировались на отдельных частях растений, например таких как хлоропласты, а не целые листья или целые растения в течении времени роста. Эти не полные исследования во многом создали ультрафиолету репутацию, которую он не заслужил (не было найдено прямой зависимости между фотосинтезом и УФ), так же были недооценены изобретательные растения, которые имеют способность сильно адаптироваться к УФ. Исследования на базилике, свекле и китайской капусте, при дополнительном облучении УФ-А в большинстве случаев приводили к увеличению площади листа и веса сырого продукта. Другие длительные исследования на олеандре и травах при досветке 340 нм УФ-А улучшали общий фотосинтез на 8-10% (не насыщающим фоном PAR при 500 мкмоль м-2 с-1.) При тестах на салате Латук существенно увеличивался размер листа, и масса сухого продута. Огурцы, выращенные под воздействием УФ-А имели более высокий потенциал фотосинтеза и повышенной транскрипцией генов, отвечающих за фиксацию углерода в клетке, по сравнению с растениями, выращенными под красным, зеленым и желтым спектрами. Причина 2 - УФ-А может изменить питательные качества ваших растений. Аналогично тому, как небольшая доза УФ полезна для человека, поскольку она помогает нам производить витамин D, растения так же реагируют на УФ, производя антиоксидантные соединения, такие как флавоноиды и фенольные соединения (кстати, именно эти соединения часто ответственны за яркие цвета фруктов - фиолетовый, красный и синий). Многие из этих соединения очень полезны для человека. Флавоноиды часто ассоциируют с большей продолжительностью жизни, с избавлением от лишнего веса, со здоровым сердцем и снижают риски возникновения рака, а так же снижают риски нейродегенеративных заболеваний. Другие фенольные соединения так же имеют важную роль в профилактике и лечении рака. Исследования показывают, что дополнительное облучения УФ-А перечной мяты, увеличивает как площадь листьев, так и общее количество фенолов и терпиноидов. Причина 3 - Ультрафиолет увеличивает вкусовые качества ваших растений, за счет увеличения уровня содержания терпенов. Эти элементы растения, служащие своего рода, защитой от солнца так же отвечают за вкус и аромат плодов и цветов. Причина 4: УФ может сделать ваши растения более устойчивыми к грибковым инфекциям Воздействие УФ-излучения -может увеличить толщину «кожи» или эпидермиса листьев, тем самым увеличивая его устойчивость к грибковым инфекциям. Возможно, вам интересно: «Как может УФ-А увеличить рост растений, когда он не очень фотосинтетически активен?» Магия УФ-А не в том, насколько она является фотосинтетически активным. Самое главное, какое влияние он оказывает на ваши растения. Ультрафиолет дает сигнал вашим растениям к изменению шаблона роста, к изменению биохимических процессов и транспирации. Свет - это не просто энергия для растений - это также и информация. Растения развили совершенно невероятные способы «увидеть» то, что вокруг них, чтобы корректировать свой рост и оптимизировать захват энергии. Первое, что растениям нужно «видеть», это другие растения рядом. Если другое растение находится выше или сбоку от них, они могут корректировать количество, размер и распределение листьев, а так же и дальнейшее направление роста. Все эти приемы позволяют получить наибольшее количество света, несмотря на конкурентов. Когда речь идет об искусственном освещении, дело уже не только в том, где свет ярче, но и в том какой длины волны он. Проходя сквозь листья, свет сильно фильтруется в области УФ, и в области синего и красного спектра. Поэтому растение понимает, что оно на ярком свете, когда на листья попадает большое количество синего, красного и УФ. Также верно и обратное, если уровень синего, красного и УФ спектра низкий, и много зеленого и инфракрасного спектра, растение считает, что оно затенено и начинает вытягивать стебель в поисках более яркого места под "солнцем". В целом такая тенденция роста сильно понижает урожай. УФ-А вместе с синим спектром инициирует ряд фоторецепторов (молекул, которые обнаруживают свет и посылают сигналы растению). В настоящее время идентифицированы критохром, фототропин, ZTL / FKF1 / LKP2 и в меньшей степени фитохром. Эти фоторецепторы вызывают ряд изменений, в том числе увеличение - производства хлорофилла, создание больших по размеру листьев, которые способны захватывать больше света, а так же, дают сигнал устьицам на листьях открыться, давая больше притока углекислого газа. Эксперименты на сое показали, что воздействие УФ-А делает растения более кустистыми и менее вытянутыми. В целом, все эксперименты на растениях в первую очередь говорят о значительном увеличении размеров листа. Подобный наглядный эксперимент каждый может провести сам для себя лично. Так же есть несколько интересных исследований о связи выработки ТГК и количества ультрафиолетового излучения в среде роста. Ученых на эту мысль натолкнуло то, что самые мощные лендрейсы растут, как правило, на высокогорьях, где уровень УФ излучения выше всего на планете. «Ближний» ультрафиолет типа А можно получить используя МГЛ или ДРИ лампы, по мимо мощного синего спектра в них присутствует и УФ-А. Так же есть гибридные лампы ДНАТ + МГЛ, что очень ценятся многими профессиональным гроверами. Можно подобрать и светодиоды УФ-А для самодельных LED светильников или уточнять спектрограммы рыночных LED светильников; имеют ли они в своем составе захват УФ – А (400 нм до 315 нм). В следующей статье мы попытаемся подробней разобраться в метрике современного фитосвета. В заключении, надо заметить, что нет предела совершенству в плане света для ваших растений, особенно когда речь идет о домашнем индоре ) Если у кого то есть опыт работы с ультрафиолетом пишите в комментариях, возможно именно ваши наработки попадут в гроупедию и станут примером для других гроверов. Дополнительно: Обсуждение на форуме Растения и ультрафиолет Материал подготовлен при финансовой поддержке магазина RuSensi
  6. Как получить больший процент содержания ТГК в медицинской марихуане с помощью ультрафиолетвого освещения? Что бы вы подумали, если бы я сказал, что увеличить потенциал ваших любимых сортов можно просто подвесив несколько 20-ваттных флуоресцентных ламп? Слишком хорошо, чтобы быть правдой? Более, чем правда. Это то же самое, что загорать на пляже: можно переполнить бесценные шишки содержанием ТГК. Ультрафиолет (UV) способен превратить хороший сорт в настоящий шедевр. Что такое UV-освещение? У вас может возникнуть вопрос: "А чем же ультрафиолет отличается от обычного света?" Хотя человеческий глаз не воспринимает UV-свет, можно визуализировать его, представив радугу с дополнительными полосками синего и фиолетового. Весь свет - это, по сути, энергетические волны, а U ультрафиолет - это просто другая форма излучения. Эти волны омывают растения с разной частотой (количество волн за секунду). У ультрафиолета промежуток между волнами меньше, чем у видимого света, а значит, больше волн проходят за 1 секунду. поэтому у ультрафиолета больше энергии, что ближе к рентгеновским лучам, а не радио волнам. Какое воздействие UV-освещения оказывает на растения марихуаны? Но как все это может повлиять на ваш конопляный рассадник? Чтобы понять, необходимо рассмотреть, как UV воздействует на клетки растений. Ультрафиолетовое излучение, а особенно ультрафиолетовые лучи спектра В, оказывают пагубное воздействие на функции растительных клеток. UV наносит вред клеткам растений таким же образом, как и коже человека, постепенно вызывая ожог. В результате пагубного воздействия все растения создают защиту против UV в виде гена UVR8. UVR8 - это молекула белка, распознающая самостоятельно ультрафиолет и дающая сигнал клеткам растений менять поведение. Как конкретно UVR8 распознает ультрафиолет, было открыто недавно, и это довольно интересно: химики называют UVR8 «димером», это означает, что он состоит из 2 структурно одинаковых субъединиц. Когда ультрафиолет воздействует на протеиновые субъединицы, их взаимосвязь ослабевает, и они распадаются. Для визуализации этого процесса можно представить следующее: потереть друг о друга 2 шара, они присоединятся друг к другу из-за статического заряда, а затем полить на эти шары, вода заберет этот статический заряд, и шары разлетятся. В этом примере шары - 2 протеиновые субъединицы, а вода - ультрафиолет, попадающий на клетки растений. После распада протеиновые субъединицы посылают сигнал ядру клетки распространить их информацию. Больше ультрафиолета - больше ТГК Одно из изменений, вызванных данной информацией, очень важно для вашего рассадника. UV-стресс стимулирует в конопле выработку химикатов против потока пенилпропаноидов, особенно малонил-CoA и фенилаланина. Почему это так важно? Потому что конопля использует малонил-CoA для выработки Оливтола, а он используется для выработки ТКГ. Теперь становится понятно, как посредством ультрафиолета увеличивается мощность конопли. У вас уже есть ультрафиолет, но он заблокирован специальным стеклом, из которого сделаны лампы. Производители ламп обязаны делать лампы из такого стекла в соответствии с законом, т.к. ультрафиолет может вызвать рак кожи при долговременном попадании на кожу человека. Вы ведь не хотите, чтобы все заболели раком из-за фонарей? Увеличить уровень ультрафиолета можно с помощью галогеновых металлических ламп в помещении, где растет конопля, и оставляя вытяжки без стекла. Но лучше и безопаснее просто купить дешевую флоуресцентную UV-лампу. Помните, ультрафиолет вызывает стресс у растений, поэтому используйте UV -лампы по времени - только часть светового цикла. Включайте UV-лампу на 15 минут каждый час, и вы получите результат. Единственный недостаток этого процесса - снижение объема урожая. Растению приходится перенаправить свои ресурсы и пережить пагубное воздействие ультрафиолета. Его использование в меру значительно улучшит качество, что оправдывает снижение урожая. Меры предосторожности! Не входите в помещение при UV - излучении, пока не выключите этот свет! Ультрафиолетовое облучение вызывает рак кожи у человека. Обсуждение в теме Растения и ультрафиолет
  • Создать...